New nanotweezers able to move submicrometer size objects in fluids

center_img New approach uses light instead of robots to assemble electronic components The mobile nanotweezers are comprised of a screw-shaped magnetic microrobotic body dotted with silver particles that cluster in response to light. Credit: Ghosh and Ghosh, Sci. Robot. 3, eaaq0076 (2018) More information: Souvik Ghosh et al. Mobile nanotweezers for active colloidal manipulation, Science Robotics (2018). DOI: 10.1126/scirobotics.aaq0076AbstractAn important goal in nanotechnology is to control and manipulate submicrometer objects in fluidic environments, for which optical traps based on strongly localized electromagnetic fields around plasmonic nanostructures can provide a promising solution. Conventional plasmonics based trapping occurs at predefined spots on the surface of a nanopatterned substrate and is severely speed-limited by the diffusion of colloidal objects into the trapping volume. As we demonstrate, these limitations can be overcome by integrating plasmonic nanostructures with magnetically driven helical microrobots and maneuvering the resultant mobile nanotweezers (MNTs) under optical illumination. These nanotweezers can be remotely maneuvered within the bulk fluid and temporarily stamped onto the microfluidic chamber surface. The working range of these MNTs matches that of state-of-the-art plasmonic tweezers and allows selective pickup, transport, release, and positioning of submicrometer objects with great speed and accuracy. The MNTs can be used in standard microfluidic chambers to manipulate one or many nano-objects in three dimensions and are applicable to a variety of materials, including bacteria and fluorescent nanodiamonds. MNTs may allow previously unknown capabilities in optical nanomanipulation by combining the strengths of two recent advances in nanotechnology. Play Capture and release of different-sized silica beads by a mobile nanotweezer nanorobot. Credit: Ghosh and Ghosh, Sci. Robot. 3, eaaq0076 (2018) The researchers demonstrated the abilities of their MNTs by moving around tiny diamonds, silica beads and samples of the Staphylococcus aureus bacteria. They note that testing also showed that the MNTs were able to grab objects without accidentally grabbing other nearby objects. They suggest their MNTs could be used in nano-assembly applications. The researchers are continuing their work with the MNTs, looking to find ways to allow them to work in parallel (using multiple overlapping magnetic fields), which could broaden their usability in commercial applications by allowing hordes of them to work together to accomplish an overall task. © 2018 Phys.org This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.last_img

Leave a Reply

Your email address will not be published. Required fields are marked *

Recent Posts

Recent Comments

    Archives

    Categories

    Meta

    Tags